Parallel Synchronous and Asynchronous Space-Decomposition Algorithms for Large-Scale Minimization Problems

نویسندگان

  • Chin-Sung Liu
  • Ching-Huan Tseng
چکیده

Three parallel space-decomposition minimization (PSDM) algorithms, based on the parallel variable transformation (PVT) and the parallel gradient distribution (PGD) algorithms (O.L. Mangasarian, SIMA Journal on Control and Optimization, vol. 33, no. 6, pp. 1916–1925.), are presented for solving convex or nonconvex unconstrained minimization problems. The PSDM algorithms decompose the variable space into subspaces and distribute these decomposed subproblems among parallel processors. It is shown that if all decomposed subproblems are uncoupled of each other, they can be solved independently. Otherwise, the parallel algorithms presented in this paper can be used. Numerical experiments show that these parallel algorithms can save processor time, particularly for medium and large-scale problems. Up to six parallel processors are connected by Ethernet networks to solve four large-scale minimization problems. The results are compared with those obtained by using sequential algorithms run on a single processor. An application of the PSDM algorithms to the training of multilayer Adaptive Linear Neurons (Madaline) and a new parallel architecture for such parallel training are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem; Using the Bottleneck-based Heuristic and Genetic Algorithm

In this paper, we study the re-entrant no-wait flexible flowshop scheduling problem with makespan minimization objective and then consider two parallel machines for each stage. The main characteristic of a re-entrant environment is that at least one job is likely to visit certain stages more than once during the process. The no-wait property describes a situation in which every job has its own ...

متن کامل

Convergence rate analysis of an asynchronous space decomposition method for convex Minimization

We analyze the convergence rate of an asynchronous space decomposition method for constrained convex minimization in a reflexive Banach space. This method includes as special cases parallel domain decomposition methods and multigrid methods for solving elliptic partial differential equations. In particular, the method generalizes the additive Schwarz domain decomposition methods to allow for as...

متن کامل

Combining Aggregation and Decomposition Methods for Performance Evaluation of Complex Systems

To reduce the complexity of computation of performance indices of parallel systems , we present a new exact method combining the aggregation and decomposition methods of the state space. Aggregation is performed by the use of the Stochastic Well-Formed Net (SWN) Petri Net model and decomposition follows tensor methods initiated by Plateau. We generalize our previous work to provide results for ...

متن کامل

Bregmanized Domain Decomposition for Image Restoration

Computational problems of large-scale appearing in biomedical imaging, astronomy, art restoration, and data analysis are gaining recently a lot of attention due to better hardware, higher dimensionality of images and data sets, more parameters to be measured, and an increasing number of data acquired. In the last couple of years non-smooth minimization problems such as total variation minimizat...

متن کامل

Giraph Unchained: Barrierless Asynchronous Parallel Execution in Pregel-like Graph Processing Systems

The bulk synchronous parallel (BSP) model used by synchronous graph processing systems allows algorithms to be easily implemented and reasoned about. However, BSP can suffer from poor performance due to stale messages and frequent global synchronization barriers. Asynchronous computation models have been proposed to alleviate these overheads but existing asynchronous systems that implement such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2000